بررسی نقش مکان‌گزینی شومینه‌های خورشیدی در تأمین آسایش در یک ساختمان اداری در اقلیم گرم و خشک، مورد مطالعاتی: شهر کرمان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه معماری، واحد بین‌المللی کیش، دانشگاه آزاد اسلامی، جزیره کیش، ایران.

2 دانشیار گروه معماری، دانشکده معماری و شهرسازی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران (نویسنده مسئول).

3 دانشیار گروه مهندسی مکانیک، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی، قزوین، ایران.

10.22034/aaud.2023.238639.2380

چکیده

بخش وسیعی ‌‌از کشور ایران در اقلیم گرم‌‌و‌‌خشک قرار دارد و به‌‌واسطه آن، از میزان جذب خورشید فراوانی برخوردار است. سیستم‌‌های تأمین‌کننده آسایش دمای داخلی، سهم عمده‌‌ای از مصرف انرژی را در بخش‌‌های مختلف ساختمان دارند و با اعمال روش‌‌های طراحی غیرفعال همچون دودکش‌‌های خورشیدی می‌‌توان به حفظ شرایط حرارتی آسایش در ساختمان‌‌ها و کاهش مصرف ‌‌انرژی کمک کند. در ‌‌این مقاله یک ارزیابی عملکرد حرارتی از نحوه توزیع دمایی توسط برنامه شبیه‌‌سازی دیزاین‌‌بیلدر در یک ساختمان دولتی در شهر کرمان انجام گرفت و با انجام فرآیند تهویه با و بدون ادغام یک دودکش‌‌خورشیدی در جبهه‌‌ جنوبی برای شرایط تابستان و زمستان ارائه شده است. در ‌‌ادامه با اعمال متغیرهای فرمی دودکش به ‌‌بررسی تغییرات دمایی و آسایش‌‌حرارتی در زوایای مختلف پرداخته شد تا میزان بهبود اثربخشی دودکش‌‌های خورشیدی در زوایای 40 الی 90 درجه در گام‌‌های 10 درجه‌‌ای نسبت ‌‌به خط افق به روش حل پارامترهای میانگین سرعت هوا و نرخ جریان ‌‌حجمی تعین گردد و در نهایت با استفاده از روش دینامیک سیالات (CFD) نرم‌‌افزار دیزاین‌‌بیلدر به ‌‌بررسی توزیع دمایی و نحوه جریان هوا پرداخته شد که نتایج این پژوهش حاکی ‌‌از آن بود که در بهترین حالت ادغام دودکش‌‌های خورشیدی با زاویه 40 درصد می‌‌تواند میزان مصرف انرژی کل را حدود 16 درصد بهینه نماید و شاخص آسایش حرارتی را از میانگین مقدار آن را در ماه جولای (تیرماه) از 2.97 واحد به 2.25 واحد و در ماه ژانویه (دی‌‌ماه) از مقدار -2.93 به مقدار -2.24 رسیده است و مقادیر آن به بازه استاندارد اشری 55 و ایزو7730 نزدیک‌‌تر شده است. با این حال، دودکش‌‌خورشیدی مستقل قادر به برآورده کردن راحتی حرارتی به میزان قابل توجهی در هوای‌‌گرم شدید نیست.

کلیدواژه‌ها


عنوان مقاله [English]

The Role of Locating Solar Chimneys in Providing Comfort for an Office Building in the Hot and Dry Climate

نویسندگان [English]

  • Poopak Poorsistani 1
  • Hossein Medi 2
  • Mostafa Mafi 3
1 Ph.D. of Candidate, Architecture Department, International Kish Entity, Islamic Azad University, Kish Island, Iran.
2 Associate Professor of Architecture, Faculty of Architecture and Urban Planning, Imam Khomeini International University, Qazvin, Iran (Corresponding Author).
3 Associate Professor of Mechanic Engineering, Technical and Engineering Faculty, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

A large area of Iran is located in a hot and dry climate, so has a high amount of sunlight absorption. Systems providing indoor temperature comfort consume a major amount of energy in different parts of the building. Some passive design techniques, such as solar chimneys can be used to keep thermal comfort in buildings and reduce energy consumption. This study evaluates the thermal performance of temperature distribution through simulation Design Builder Software in a government building in Kerman City. This evaluation has been provided by doing a ventilation process with and without integrating a solar chimney in the southern front of the building during summer and winter. The formic variables of the chimney were then applied to examine temperature variations and thermal comfort in different angles to determine the effectiveness of the solar chimney within 40–90-degree angles in 10-degree steps relative to the horizon line by solving average airspeed and volumetric flow rate parameters. Finally, the computational fluid dynamics (CFD) method was used through Design Builder software to measure temperature distribution and airflow. The results implied that the integration of solar chimney could optimize around 16% of the total energy consumption with 40% angel in the best state, and the average value of the thermal comfort index in July reached from 2.97 to 2.25, while this amount reached from -2.93 to -2.24 in January. This value has approached ASHRAE standard 55 and ISO 7730. However, solar chimneys alone cannot provide considerable thermal comfort in extremely hot weather.

کلیدواژه‌ها [English]

  • Thermal Comfort
  • Energy Optimization
  • Solar Chimney
  • Design Builder
  • Hot and Dry Climate
  • Kerman
Abd Elbar, Ayman Refat, and Hamdy Hassan. 2019. Experimental investigation on the impact of thermal energy storage on the solar still performance coupled with PV module via new integration. Sol. Energy: 584-593. https://doi.org/10.1016/j.solener.2019.04.042 [in Persian]
Afonso, Clito, and Oliveira Armando. 2000. Solar chimneys: simulation and experiment. Energy Build 32: 71-9.https://doi.org/10.1016/S0378-7788(99)00038-9
Ansarimanesh, Maryam and Nazanin Nasrollahi. 2018. Proper Range of Carbon Dioxide to Optimize Indoor Environmental Quality in Office Buildings of Kermanshah. Naqshejahan- Basic studies and New Technologies of Architecture and Planning, 8(1): 9-15. http://magiran.com/p1816300 [in Persian]
ANSI/ASHRAE Standard 62.1. 2010 Supersedes ANSI/ASHRAE Standard62.1-2007- American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. 1791 Tullie Circle NE, Atlanta, GA 30329. https://upgreengrade.ir/admin_panel/assets/images/books/25223276727.pdf
Bahadrinejad, Mehdi, and Mahmoud Yagoubi. 2016, “Natural ventilation and cooling in traditional Iranian buildings”. Tehran University Publishing Center, first edition. http://www.lib.ir/book/60184757/ [in Persian]
Cole, Raymond J., and Laura Fedoruk. 2015. Shifting from net-zero to net-positive energy buildings. Build. Res. Inf. 43: 111-120. https://doi.org/10.1080/09613218.2014.950452
Fakhari, Maryam, and Shahin Heydari. 2012. Optimizing the solar chimney and investigating its effect on building ventilation. Architecture and urban planning (fine arts) 18(2): 83-88. https://sid.ir/paper/154382/fa [in Persian]
Garcia-Hansen, Veronica, Esteves Alfredo, and Pattini Andrea Elvira. 2002, Passive solar systems for heating, daylighting and ventilation for rooms without an equator-facing facade. Renew Energy 26: 91-111. https://doi.org/10.1016/S0960-1481(01)00089-1
Mekkawi, Gehad, and Rana Elgendy. 2016, Solar Chimney for Enhanced Natural Ventilation Based on CFD-Simulation for a Housing Prototype in Alexandria, Egypt. In the 63rd International Conference on Civil and Architectural Engineering (ICCAE), At Berlin, Germany, July. https://www.worldresearchlibrary.org/up_proc/pdf/363-146959948407-12.pdf
Hamdy, Inass, and, Fikry Mohamed Anwar. 1998. Passive solar ventilation. Renew Energy 14: 3816. https://ideas.repec.org/a/eee/renene/v14y1998i1p381-386.html
Imran, Ahmed Abduinabi, Jalil Jalal M., and Ahmed Sabah T. 2015. Induced flow for ventilation and cooling by a solar chimney. Renew Energy 78: 236-44. https://ideas.repec.org/a/eee/renene/v78y2015icp236-244.html
Jan Vanand, Isa, and, Reza Razaghi. 2018. Numerical investigation of parameters affecting air speed in solar chimney. Energy Management Engineering (Energy Management) 9(4):74-81. https://sid.ir/paper/376786/fa [in Persian]
Jing Kong, Jianlei Niu, and Chengwang Lei. 2020. A CFD based approach for determining the optimum inclination angle of a roof-top solar chimney for building ventilation. Solar Energy 198: 555-569. https://doi.org/10.1016/j.solener.2020.01.017
Khanal, Rakesh, and Lei Chengwang. 2011. Solar chimney, a passive strategy for natural ventilation. Energy, Build 43: 1811-1809. http://dx.doi.org/10.1016/j.enbuild.2011.03.035
Lal Shiv, Kaushik S., and Bhargav P. 2013. Solar chimney: a sustainable approach for ventilation and building space conditioning. Int J Dev Sustain 2: 277-97. https://isdsnet.com/ijds-v2n1-20.pdf
Mahdavinejad, Mohammadjavad, Maryam Fakhari, and Fateme Alipoor. 2013. The Study on Optimum Tilt Angle in Solar Chimney as a Mechanical Eco Concept. Frontiers of Engineering Mechanics Research 2: 71-80. https://www.researchgate.net/publication/256198688
Management and Planning Organization of Kerman Province. 2015. Kerman Province Planning Studies. [in Persian]
Mathur, Jyotirmay, and Sanjay Mathur. 2006, Experimental investigation on four different types of solar chimneys. Adv Energy Res 12:151-156. http://www.sciepub.com/reference/37569
Mojarrad, Firouz, and Kamran Moradi. 2013. An attitude on the inconsistencies and trends of sunny hours in Iran. Geography and Development 12(series 34): 153-165. https://sid.ir/paper/77093/fa [in Persian]
Moulai, Mohammad Mahdi. 2019. Pilleh Chiha Peyman, Zarin Mehr Zahra, Shaari Jalil. Investigating the combination of open and closed urban space on the efficiency of solar chimney, case study: office building in the hot and dry climate of Shiraz. Utopia architecture and urban planning 13(31): 157-167. https://sid.ir/paper/378695/fa [in Persian]
Poursistani, Poopak, Hosein Medi, and Mostafa Mafi. 2021. Evaluation of thermal performance of a solar chimney with two independent modes and air injection from the floor - Case study: Office building in Kerman. Geography (Regional Planning) 11(44): 702-721. magiran.com/p2346444 [in Persian]
Rahman, MdMizanur, Chu Chi-Ming, Kumaresen Sivakumar, Yan Farm, Kim Phang, Mashud M., Shahidur, Rahman. 2014. Evaluation of the modified chimney performance to replace mechanical ventilation system for livestock housing. Procedia Eng 90: 245-8. https://doi.org/10.1016/J.PROENG.2014.11.844
Urge-Vorsatz, Diana, Luisa F. Cabeza, Susana Serrano, Camila Barreneche, and Ksenia Petrichenko. 2015. Heating and cooling energy trends and drivers in buildings. Renew Sustain Energy Rev 41: 85-98. https://doi.org/10.1016/j.rser.2014.08.039
Zanganeh, Najmeh, and Zahra Barzgar. 2017. The Comparison of Internal and External Thermal Comfort of winter stayed and Central Yard in Traditional House by PMV and PPD Methods (Case Study: Tavallaee House in Shiraz). Haft Hesar J Environ Stud 6(24): 55-68. http://hafthesar.iauh.ac.ir/article-1-570-fa.html [in Persian]
https://www.Solargis.info
https://www.yjc.ir/fa/news/5608745
https://climate-consultant.informer.com/6.0/ 
http://kerman-met.ir/