طراحی فرآیندی جهت نیل به روشنایی طبیعی مناسب برای یک فضای کاری اداری در شهر تهران از طریق محاسبه ابعاد بهینه ی پنجره، سایبان و عمق مفید اتاق

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد معماری دانشگاه علم و صنعت ایران، دانشکده معماری و شهرسازی، تهران، ایران؛ کارشناس ارشد طراحی نورپردازی دانشگاه KTH، استکهلم، سوئد

2 کارشناس ارشد معماری، دانشکده معماری و شهرسازی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

استفاده ی صحیح از نور روز، استفاده ی صحیح از منبع رایگان انرژی است. توجه به کیفیت و کمیت نور روز، به ویژه در مراحل اولیه ی طراحی معماری بسیار حائز اهمیت است چرا که منجر به خلق فضایی با مصرف انرژی کمتر و کیفیت بالاتر شده و همزمان سلامت روحی و جسمی ساکنین را نیز تضمین می نماید. در ساختمان های تجاری، اداری و صنعتی نیز توجه به این مقوله، امکان افزایش بازدهی کارکنان را فراهم می آورد. از آنجائی که ذخیره ی انرژی خورشیدی دریافتی در فضای داخل و امکان استفاده از آن در دیگر ساعات روز به سادگی و بدون صرف هزینه امکا نپذیر نمی باشد، حداکثر استفاده ی صحیح از نور روز می بایستی در همان مراحل اولیه ی طراحی، مدّ نظر طراحان و مهندسان قرار گیرد. در این مقاله ابتدا با لحاظ یک اتاق اداری نمونه در شهر تهران با جهت گیری در چهار جهت اصلی شمال، جنوب، شرق و غرب محاسبات لازم به منظور تعیین شکل و ابعاد بهینه ی پنجره ها، طول مفید اتاق و نیز نوع و ابعاد سایبان انجام پذیرفته و سپس در پایان فلوچارتی ارائه شده است که مراحل انجام کار را قدم به قدم شرح داده و طراحان و مهندسان را در ایجاد بنایی با روشنایی طبیعی مفید و مطلوب یاری نماید.

عنوان مقاله [English]

A New Method for Achieving Daylight in Working Spaces by Finding the Efficient Type and Size of Windows, Shading Systems and Depth of Rooms

نویسندگان [English]

  • Majid Miri 1
  • Mohsen Kompani Saeed 2
1
2
چکیده [English]

By having daylighting in mind through a building design process rather than end of it, achieving a more sustainable space is much easier and feasible. Since many people spend an important amount of their lives at their working spaces, accessing enough natural light together with satisfying view are essential for their physiological and psychological health. Moreover as a daylighted space has a good potential to increase employees’ performance and productivity, it can benefit both its owner and its occupants. Now, the question is what factors constitutes a well daylighted space. To balance occupant comfort and energy consumption, daylight availability in such spaces should neither be too low nor excessive. The conventional definition for a well daylighted space is based on the IES recommendations (Andersen M, et. al. 2012, p. 3). Any spaces that comply with it should have yearly enough access to daylight. To evaluate any space, this guideline asks to calculate both Special Daylight Autonomy (sDA300/50%) and Annual Sunlight Exposure (ASE1000/250h). However, in this paper, we create another new definition for a daylighted space which is called useful daylighting. It is applicable when we want to see if the space has enough access to useful daylight in a year or not. As its name is suggested based on calculating sUDI100-2000/50%. In both daylighted definitions, to define any areas as daylighted, at least 75% of all the regularly occupied space of it should have minimum UDI100-2000 or DA300 of 50%. Additionally for a well daylighted space, the maximum acceptable value for ASE1000/250h is 10%. In this paper, at first we define a working space that its dimension and windows to wall ratios (WWR) are taken from the reference office definition recommended by Christoph Reinhart and his colleagues in 2013 (Reinhart, et. al 2013). Then, to solve the issues of excessive sunlight entering the interiors, two methods are suggested. The former is to use horizontal or vertical + horizontal outside shading systems, while the latter is to exclude part of task area facing too much sunlight during a year. Therefore by analyzing ASE1000/250h ≤ 10% for four main geographical room orientations (East, West, North and South) and for each WWR we can define an effective type and size of a shading system or an efficient distance that task area should be away from the window walls. Then by calculating Special Useful Daylight Illuminance (sUDI100-2000/50% ≥ 75%) for each WWRs and room orientations we can find out the optimum WWR when we want to define the room to have useful daylighting. After that, regarding recommendations for a well daylighted space, we need to find the efficient and acceptable depth for rooms. To do so, a new metrics that is called Average Daylight Autonomy is created here. It is defined as the average of DA300 for all points on the task surface grid having the same distance from the window wall. In the next step by calculating aDA300 of each distance from the window wall, we can find the border line between aDA300 ≥ 50% and aDA300 < 50% or in other word between daylit and not-daylit space. The distance of this border line from the window wall is the efficient depth of the room. However as it is already discussed any daylighted space needs to have DA300/50% more than 75%, therefore to find the acceptable depth for rooms we can multiply the efficient depth of room by 1.3333 (=100/75). So in the end of this part for each room, we can define the optimum WWR and room’s length. Thereafter, to make the final decision about which solution (using shadings or excluding task areas) is the best, we can calculate the number of hours per year that the shading system restricts entering sunlight into the space. Hence, the solution that has less number of closing hours is the winner. In the end, it is worth to say that considering enough access to natural light is just one of the requirements to design a successful and high quality space, while other concerns like aesthetics of the space, improving health, happiness and comfort of their occupants, reduction in energy consuming and excessive heating or cooling loads, decreasing noise problems, occupants behaviors, etc. should be taken into account. Finally, as a conclusion, the main and final goal of this paper is to define a good method for finding the efficient dimension of different rooms, types and sizes of shading systems, and interior layouts for any types of buildings.

کلیدواژه‌ها [English]

  • Office Spaces
  • Windows’ Dimensions
  • Efficient Length of Rooms
  • Shading Systems
  • Daylighting
Ander, G., Andersen, M., Ashmore, J., et al. (2013). IES RP-5-13 – Recommended Practice for Daylighting Buildings, Illuminating Engineering Society.
 Andersen, M., Ashmore, J., Beltran, L., et al. (2012). IES LM-83-12, Approved Method: IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE), Illuminating Engineering Society. http://daysim.ning.com/page/keyword-dynamic-daylight-simulation
 Mardaljevic, J., Andersen, M., Roy, N., & Christoffersen, J. (2011). Daylighting Metrics for Residential Buildings
 Mardaljevic, J. (2008). Climate-Based Daylight Analysis for Residential Buildings, Impact of various window congurations, external obstructions, orientations and location on useful daylight illuminance, Technical report, IESD, De Montfort University, Leicester.
 Miri, M., & Kompani Saeed, M. (2013). Assessing Daylight Access Requirements in Iranian National Building Code (Case Study in Qazvin). Armanshahr Journal of Architecture, Urban Design & Urban Planning, Special Issue of the 1st Iran Lighting Design Conference Selected Articles, 109-121. 
Nabil, A., & Mardaljevic, J. (2005). Useful Daylight Illuminance: A New Paradigm for Assessing Daylight in Buildings. Lighting Research and Technology.
Reinhart, C.F., Mardaljevic, J., & Rogers, Z. (2006). Dynamic Daylight Performance Metrics for Sustainable Building Design, Leukos.
 Reinhart, C.F., & Weissman D. (2012). The Daylit Area - Correlating Architectural Student Assessments with Current and Emerging Daylight Availability Metrics. Building and Environment, 155-164.  of Dynamic Façade and Lighting Technologies. 13th Conference of International Building Performance Simulation Association, Chambéry, France, 3645-3652.
 Reinhart, C.F. (2014). Daylighting Handbook 1, Fundamentals, Designing with the Sun.
 Tregenza, P., & Wilson, M., (2011). Daylighting: Architecture and Lighting Design, Abingdon: Routledge.
 Veitch, J.A. (2011). The Physiological and Psychological Effects of Windows, Daylight and View at Home. Velux Symposium, Lausanne, 1-6